Finitary Galois Extensions over Noncommutative Bases
نویسنده
چکیده
We study Galois extensions M (co-)H ⊂ M for H-(co)module algebras M if H is a Frobenius Hopf algebroid. The relation between the action and coaction pictures is analogous to that found in Hopf-Galois theory for finite dimensional Hopf algebras over fields. So we obtain generalizations of various classical theorems of Kreimer-Takeuchi, Doi-Takeuchi and Cohen-FischmanMontgomery. We find that the Galois extensions N ⊂M over some Frobenius Hopf algebroid are precisely the balanced depth 2 Frobenius extensions. We prove that the Yetter-Drinfeld categories over H are always braided and their braided commutative algebras play the role of noncommutative scalar extensions by a slightly generalized Brzeziński-Militaru Theorem. Contravariant ”fiber functors” are used to prove an analogue of Ulbrich’s Theorem and to get a monoidal embedding of the module category ME of the endomorphism Hopf algebroid E = End N MN into NM op N .
منابع مشابه
Galois-azumaya Extensions and the Brauer-galois Group of a Commutative Ring
Introduction. Galois extensions of noncommutative rings were introduced in 1964 by Teruo Kanzaki [13]. These algebraic objects generalize to noncommutative rings the classical Galois extensions of fields and the Galois extensions of commutative rings due to Auslander and Goldman [1]. At the same time they also turn out to be fundamental examples of Hopf-Galois extensions; these were first consi...
متن کاملGeneric Hopf Galois extensions
In previous joint work with Eli Aljadeff we attached a generic Hopf Galois extension A H to each twisted algebra H obtained from a Hopf algebra H by twisting its product with the help of a cocycle α. The algebra A H is a flat deformation of H over a “big” central subalgebra B H and can be viewed as the noncommutative analogue of a versal torsor in the sense of Serre. After surveying the results...
متن کاملGalois Corings Applied to Partial Galois Theory
Partial Galois extensions were recently introduced by Doku-chaev, Ferrero and Paques. We introduce partial Galois extensions for noncommutative rings, using the theory of Galois corings. We associate a Morita context to a partial action on a ring.
متن کاملComatrix Corings and Galois Comodules over firm rings
Galois corings with a group-like element [4] provide a neat framework to understand the analogies between several theories like the Faithfully Flat Descent for (noncommutative) ring extensions [26], Hopf-Galois algebra extensions [27], or noncommutative Galois algebra extensions [23, 15]. A Galois coring is isomorphic in a canonical way to the Sweedler’s canonical coring A ⊗B A associated to a ...
متن کاملNon-Commutative Gröbner Bases in Poincaré-Birkhoff-Witt Extensions
Commutative Gröbner Bases are a well established technique with many applications, including polynomial solving and constructive approaches to commutative algebra and algebraic geometry. Noncommutative Gröbner Bases are a focus of much recent research activity. For example, combining invariant theory and elimination theory, or elimination in moving frames of partial differential operators invar...
متن کامل